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ABSTRACT

The present paper is devoted to the qualitative analysis of certain flotation processes describing by a first order
hyperbolic system of partial differential equations. The system in question is like telegrapher equations. That is
why, we use the methods for examining the transmission lines set out in the papers mentioned in the References.
We formulate a mixed problem for this system with boundary conditions corresponding to the processes in the
flotation cameras. We present the mixed problem for the hyperbolic system in a suitable operator form and prove
an existence of generalized solution by fixed point method. One can obtain an explicit approximated solution as
a step in the sequence of successive approximations.

KEYWORDS: Camera flotation, Qualitative analysis, Hyperbolic system, Operator presentation, Successive
approximations, Fixed point method.
1. INTRODUCTION

A lot of papers have been devoted to the investigation of flotation processes. We mention just (Cipriano;
Parashkevova, 2006; Prozuto, 1987; Speedy et al., 1970; Loveday et al., 1995; Cienski et al., 1981; Finch et al.,
1990; Azgomi et al., 2007; Sbarbaro et al., 2010; Rubinstein et al., 1980). Here we study a system describing
camera flotation process considered in (Rubinstein et al., 1980). From mathematical point of view, it is a system
of hyperbolic type just like lossless transmission lines investigated in (Angelov, 2014):

G0 _ ke ety =k, C, (1) =7, 2C8 5D
ot ox

G 6D _ ko e+ k,C, (x1) 47, 22D
ot ox

(x,t)ell = {(x,t)e R? :(x,t)e [O,H]x[O,TO]}

(1)

Here C,(x,t)1is the mineral concentration in the liquid, C,(x,?) is the mineral concentration on the bubbles,
k, and k, are prescribed kinetic constants describing particle transitions from one phase to another, /7 >0 is the
height of the camera and [0, T 0] is prescribed time interval; the constant V,, > 0 is a particle sedimentation rate,
the constant J/, >0 - the bubble lifting speed. It is known that V/, >>V, (cf. Rubinstein et al., 1980). The

process in the camera are such that }/,, is directed from top to bottom, while V', the speed of the bubbles is directed
upwards.

For system (1) one can formulate the following mixed (initial-boundary value) problem: to find the unknown
concentration functions C,(x,#) and C,(x,t) in II satisfying initial conditions

Cy(x,0)=0; Cp(x,0) = Cpy, 2)

[91]
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where Cp, = const.> 0 is a prescribed initial concentration and boundary conditions
C,(0,6)=0, C,(0,£)=Cp, =const.>0  t<[0,T,]. 3)

In (Angelov, 2014) the mathematical methods for investigation of transmission lines and some applications (cf.
also Angelov et al., 2017) are developed. The methods from (Angelov, 2014) in (Angelov, 2016; Angelov, 2016;
Angelov, 2019; Angelov, 2015; Angelov, 2015; Angelov, 2019) is generalized to study various problems for
transmission line systems without Heaviside condition. It turns out that this method to our flotation problem is
applicable. We present the mixed problem for the above hyperbolic system in an operator form. Choosing a
suitable function space, we prove existence theorems for (1) - (3) by fixed point method (cf. Angelov, 2009).
Finally, we demonstrate a simple way to obtain successive approximations tending to the solution of our problem.
Introduce denotations

0C,(x,1) 0C,(x,1)

s_[Gn] | a | | e ,A{Vﬂ 0 }
Co(x,t) ot |0C,(x,t)| ox |0C,(x,1) 0 -7,
ot ox
Then (1) can be rewrite as
aCB;tx”) +7, ac% Ecx’ D ko) =y Cp ()
aCPa(tx’ D_y, aC% Ecx’ D o ko) + s Cy (1)
or in a matrix form
0C,(x,1) 0C,(x,t)
o |, |Vs O ox |_| ko k|| Cpxt)
0C,(x,t) 0 =V, 0C,(x,t) -k ky, ||Cuo(x,0)
ot ox
or
8_U + Aa—U =I'U. “4)
ot ox

v, 0
0 -V,

A, =Vy, A, ==V, . So we are able to formulate the main problem of the paper:

Here the matrix A ={ :| is in a diagonal form. Therefore the characteristic roots are

To solve the hyperbolic system (4) satisfying initial conditions

[92]
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Cp(x,0)=0, Cp(x,0)=Cpy=const.>0 xe [O,H ] %)

and boundary conditions

Cy(0,0)=0, Cp(0,0)=Cpy, 1€[0,T)]; Cy(H,t)=Cpy, Cp(H,t)=Cpy, t€[0,T,]
Cyp(H,0)+Cp(H,t) = k()< 1, where & =sup{x(t): £ €[0,T,]}<1.

2. AN OPERATOR FORMULATION OF THE MIXED PROBLEM
The mixed problem is: to find a solution (C p(x,0), Cp(x,t )) of the following system.

Following (Angelov, 2016; Angelov, 2016; Angelov, 2019; Angelov, 2015; Angelov, 2015; Angelov, 2019) we
consider the Cauchy problem for the characteristics:

déldr=V,, E(t)=x foreach (x,t)ell = @, (r;x,0) =V, +x-Vyt, (6)
dnl/dr =-V,, n(t)=x foreach (x,t)ell = @ (r;x,t)=-V,7+x+V,t. @)

Functions A, (x,£) =V, >0 and A,(x,¢) =V, <0 are continuous ones and imply a uniqueness to the left
from ¢ of the solution & =@, (t;x,t) of d&/dt=V,, &(t)=x and respectively 77 =@, (t;x,t) of
dnldt=-V,, n(t)=x.

Denote by y,(x,) the smallest value of 7 such that the solution @, (7;x,t) =V,7 + x =Vt of (6) still
belongs to IT and by y,(x,¢) — the respective value of 7 for the solution @, (7;x,t) =—V,r +x+Vpt of

(.
If yp(x,t)>0 then @,(x,(x,1);x,6)=0 or @,(yz(x,1);x,t)=H and respectively if y,(x,¢)>0

then @, (¥ p(x,2);x,t) =0 or @,(yp(x,1);x,¢)=H . Inour case

t—= for Vjt—x>0 A
Xp(x,0) = Ve Xp(x,0) = Vp
0 for Vyt—x<0 0 for Vot+x-H <0

for Vot+x—H >0

Remark: We notice that 0 < y,(x,1) <t, 0< y,p(x,1) <t.
It is easy to see that

@ (T;x,0) =Vt +x =Vt = @z(05x,0)=x—-Vyt;
@p(T;x,0) ==Vt +x+Vot = @p(0;x,t)=x+V,t.
Introduce the sets

I, ;= {(X,l‘)GHZ )(B(X,t)ZO}E {(x,t)eH:x—VBIZO},

I, , ={x.0)ell: 1, (x,)=0}={(x,))ell:V,t+x-H >0},

(93]
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I, ={x,0) ell: 7,(x,6)>0, @,(x,(x,0);x,0)=V,(Vyt—x)/V, +x—V,t =0},
I, = {0 ell: 2,(x0>0, @,(xz,(e0x,0 =V, (Vyt—x)/Vy+x—V,t=H}=,

H—-x

I, ={(x,7) TT: ,(x,£) >0, (oP(;(P(x,t);x,t):—V{t— J+x+VPt=O}=®,

P

HHP={(x,t)eH: Xp(x,1)>0, (pp(;(P(x,t);x,t):—VP(t—HV_xJ+x+th=H}
P

Prior to present the mixed problem in operator form we introduce

Cpo(x=V3t), (x,t)EHm,B { 0, (x,t)EHm,B

(G G0 = {(DOB (CBaCP)(ZB(xa t)),(x,t) el ) Cro »(x,0) eIl

and

Cpo(x+V3t), (x,t)ell,
<I>P(CB,CP>(x,r>={ (x4 V5), (1) €

K(t) - CB(Ha ZP(xat))a ()C,t) € 1_[OP '
So we assign to the above mixed problem the following system of operator equations

C,(x,)=0, (x,0)ell

in,B>

Cp(x,t) =Cpy + J.kICB(ZB(xat)aS)_kZCP(ZB(xat)aS)dSa (x,1) ellyy

—

Ve
Co(x,0)=Cpy, (x,0)€Il, , (®)
Co(H,1) = x(t) — Cy(H, yp(x,1)) + j(— I Cy(xp(x,0),8) + kyCp(p(x,0),5) Ms (x,0) € Typ.
H-x

—
Vp

Introduce the function sets:
M, = {CB e C([0, H]x[0,T,1:|C, (x,1)| < Cpe”,x € [o,H]},
M, ={C, € C[0, H1X[0.T,1:|C, (x.0)| < Cpe® x [0, H 1},

where Cj,Cp and u are positive constants.

[94]
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It is easy to verify that the set M , X M, turns out into a complete metric space with respect to the metric:

p((CB’CP)’(gB’gP)) = max {p(CB’gB ), p(CP’gP)}ﬂ where
P(CysCy) =suple |C,(x,0) = Ty (x, 1) (x,0) €[0, HIx[0, T, 1,

P(CosC) =suple™[C,(x,5) = Ty (x,)| : (x,0) €0, HIX[0,T, .
Now we define an operator 7' = (TB,TP):MB XMp—>MyxM, by the formulas

T3(Cy,Cp)(x,8) =0, (x,1) €1, 5,

T, (Cp,Cp)(x,t) = Cyy+ J.kICB(}(B(x,S),s)—kch(}(B(x,S),S)dS, (x,1) €llyg;

P2
VB

TP(CB’CP)(x’t):: C()Pa (xat) el_Iz'n,P’

To(Cy, Cp)(x,0):= k() = Cp(H, yp(x,0)) + j.(_ ki Cy(xp(x,8),8)+k,Cp(xp(x, S),S))ds )

Vp

(x,t)ell,,.

3. EXISTENCE THEOREM
We call a generalized solution (Cp,Cp) of (4), (5)if (Cy,C,) is a solution of integral equations (8). The main
purpose of the section is to prove an existence of solution of (8).

Theorem 1. Let the following conditions be fulfilled for sufficiently large 4> 0:

14+6)C, +k,Cp A N Ty oA
)( l)cB 2L <Cy; ) R+Che 7P +—leB+k2CPSCP;
7 p
e ki tky A ~ _ )
3) e +T<1; 4) Cpy<Cpi Cop < Cp; 5)K =supix(t): 1 €[0,T,]}<1.

Then there exists a unique generalized solution of (8) on the set [0, H — ] x[0,7;,],where 0< &< H .

Proof: We show that the operator 7' = (T o1 P): M,yxM, —> M,xM, above introduced maps the set
M 5 x M p into itself. We notice that T (Cp,Cp)(x,¢) and T,(Cy,,Cp)(x,t) are continuous functions.

First we have to show that |7}, (Cy, Cp )(x,1)| < Cpe, |Tp(Cy, Cp)(x,0) < Cre™.

Indeed, |®B(CB, Cp)(x, t)| =0 and therefore

[95]
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wlr=Vg) (l+kl)(§B+kZC’P o< O
— B

t
<(145)C, +k,Cp) [emds <((1+k)C, + PN i <
. u u
x
Ve

IT,(Cyr Co) (0, t) <)+ Co(H, 25 (6, 0) + - [K|Cy (259 + | Co(p,5)dls <

t

H-x — A A
. A ”[’* VP] kC,+k,C, i<l prCo TP +k1CB+k2CP oh
U U
A 7/47 + kléB + kzép Jeﬂt S
7]

for sufficiently large 1> 0.
The operator T is contractive one. Indeed,

IT5(Cy. Co)(x.0) = Ty (. C,

t
< Ikl‘CB (Vs +x—Vy5,5)—Cy(Vys +x— VBS,S)‘ +k2‘CP(VBS +X—Vy5,8) = Cp(Vys +x— VBS,S)‘dS <

S
V,
i — t _ f _ _ oMt _ ot -VBx)
<plCp.Cu by [eds+p(Cp.Cply [eds <maxip(C,.C, ) plChnC ik +k2)T <
tfi tfi
<eﬂtp((CB’C ) Cy,C ))kl Tk
U
Consequently
k +k,

IO(TB(CBﬂcP)ﬂTB(aBﬂaP)) p p((C37C )(CB’C ).

For the second component we have

| To(Cs Co)x1) = Tp(C Cp)oxu)| < |C(H, 10 (30) = Cy(H, g (x,0)| +

t
+ Ikl‘CB(ZPﬂs) _6B(ZP’S)‘ +k2‘CP(ZPvS)_5P(ZPaS)‘dS <
H-x

rp
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t t
<p(Cy.C e +p(C. CyJy [eds+p(C.CuJ, [eds <
. [f/[:x . [f/[:x
_ ﬂ[tfHﬂ] . ’ B t
<plC,.Chle "7+ plcy Gy, [erds+ p(Cp.Co ey Jeras <
H-x H-x
t— t—
Vp Vp

— H - E—
<e"p(C,.Cye 7 +p(Cy.C, e E p +p(C,.C, K, p <
r y _ H-x _ H-x
_ —x V v
<e p(CB,CB)e " +p(CB,63)k11_elu ’ +p(CP,5P)k21_eﬂ ’ <

H-x

<ol T +’; "ﬂ Jp((cg,c 1(C,.C, >><[ NE +"l%lk2}p((cg,cp>,@,5p»

which implies

p(TP(cB,cP),TP(GBfP))s[e i K ;k Jp((CB,C ).(C,.C,)).

Since
AT (Con C T @0, C)5 (€ o) Con € P
and
— — —\ s k+k
p(TP(cB,cP>,TP(cB,CP>)sp((CB,CP),(CB,CP){ +%}
it follows
max{p(T,(C;.C;). T, (C,.Co)) p(T5(Cy.Co ). To(C,..Co) i< p((C,. Co )M (C,. C ))[e Sy +%}
that is,

p((TB<cB,CP>,TP<CB,CP>),(TB<53,5P>,TP<53EP)))S[e +%J (Cp.C)A(C,.Cy)

and in this way we have shown that 7 is a contractive operator. The fixed point of 7 is a solution of the mixed
problem above formulated.
The main Theorem is thus proved.

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research T echnology
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4. CONCLUSION REMARKS
Here we show the process of obtaining of successive approximations. We begin with the first step choosing

CB(O)(XJ) =Cyy, CP(O)(x,t) =Cp, . Then

Cy" (0,0 = Cpo+ [ Cy" (3 (x,),5) =l Cp™ (25 (x,0),8)ds, (1) €TT,

X
VB

t
C M HL) =k (0 C, " (H ()4 [(FhC,™ (2(59).8) +aCp (1)) s - (520 € T
H-x

REFERENCES

[1] A. Cipriano, “Industrial Products for Advanced Control of Mineral Processing Plants. Advanced
Control and Supervision of Mineral Processing Plants”. Editors D. Sbarbaro.

[2] D. D. Parashkevova, “Analysis of Technological Solutions and Methods for Control of Copper Ores
Flotation”, PhD Thesis, University of Mining and Geology ,,St. 1. Rilski”, Sofia, 2006, (in
Bulgarian).

[3] V. S. Prozuto, “Automation System for Control of Technological Processes in Flotation Plants”,
Moscow, 1987, (in Russian).

[4] C.R. Speedy, R. F. Brown, G. C. Goodwin, “Control Theory”, Oliver and Boyd, Edinburgh, 1970.

[5] B. K. Loveday, C. J. Brouckaert, “An analysis of flotation circuit design principles”, The Chemical
Engineering Journal 59 (1995), pp. 15-21.

[6] T. Cienski, V. Coffin, “Column flotation operation at Mines Gasp’e molybdenum circuit”,
Proceedings of the 13th Annual Meeting of the Canadian Mineral Processors, CIM, Ottawa,
(Canada), 1981, pp. 240-262.

[7] J. A. Finch, G. Dobby, “Column flotation”, Pergamon Press, Oxford, 1990.

[8] F. Azgomi, C. O. Gomez, J. A. Finch, “Correspondence of gas hold-up and bubble size in presence
of different frothers”, International Journal of Mineral Processing, Vol.83, No.1-2, 4, (2007), pp.1-
11.

[9] “Advanced Control and Supervision of Mineral Processing Plants”, Editors: Daniel Sbarbaro,
René Del Villar (Eds.), 2010.

[10] Yu. B. Rubinstein, Yu. A. Filipov, “Flotation Kinetics”, Moscow, 1980, (in Russian).

[117V. G. Angelov, “A Method for Analysis of Transmission Lines Terminated by Nonlinear Loads”,
Nova Science, New York, 2014.

[12]V. G. Angelov, M. H. Hristov, “Lossless Transmission Lines Terminated by Linear and Nonlinear
RLC-Loads”, International Journal of Recent Innovations and Trends in Computing and
Communications, June (2017), Volume 5, Issue 6, pp.1341-1352.

[13]V. G. Angelov, “Lossy transmission lines with Josephson junction - continuous generalized
solutions”, Communication in Applied Analysis, 20 (2016), pp. 91-106.

[14]V. G. Angelov, “Polynomial Nonlinearity in Superconducting Lossless Transmission Line
Equations”, Journal of Robotic and Mechatronic Systems, vol. 1, No. 1, (2016), pp. 1-9,
WWW.jorams.co.uk.

[15]V. G. Angelov, “Nonlinear Membrane Circuit Loaded on a Lossy Transmission Line without the
Heaviside’s Condition”, European Journal of Engineering Research and Science. 4, 10, Oct. 2019,
pp. 190-197, DOIL:https://doi.org/10.24018/ejers.2019.4.10.1583.

(98]

IJESRT is licensed under a Creative Commons Attribution 4.0 International License.




" THOMSON REUTERS

ISSN: 2277-9655
[Parashkevova et al., 9(11): November, 2020] Impact Factor: 5.164
IC™ Value: 3.00 CODEN: 1JESS7
Generalized Solutions”, Journal of Multidisciplinary Engineering Science and Technology
(JMEST), vol. 2, No. 1, January 2015, pp. 291-298.
[171V. G. Angelov, “Josephson Lossless Transmission Lines with Nonlinear R-Element”, International
Research Journal of Natural Sciences, vol. 3, No. 3, (2015), pp. 59-79.
[18]V. G. Angelov, “Transverse Electromagnetic Lossy Transmission Lines Terminated by RLC-
without Heaviside’s Condition”, Bulletin of the Allahabad Mathematical Society, vol. 34, Part 1,
(2019), pp. 105-134.
[19]V. G. Angelov, “Fixed Point of Uniform Spaces and Applications”, Cluj University Press, Babes -
Bolyia University, 2009.

[99]

IJESRT is licensed under a Creative Commons Attribution 4.0 International License.




