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ABSTRACT 
The present paper is devoted to the qualitative analysis of certain flotation processes describing by a first order 

hyperbolic system of partial differential equations. The system in question is like telegrapher equations. That is 

why, we use the methods for examining the transmission lines set out in the papers mentioned in the References. 

We formulate a mixed problem for this system with boundary conditions corresponding to the processes in the 
flotation cameras. We present the mixed problem for the hyperbolic system in a suitable operator form and prove 

an existence of generalized solution by fixed point method. One can obtain an explicit approximated solution as 

a step in the sequence of successive approximations. 

 

KEYWORDS: Camera flotation, Qualitative analysis, Hyperbolic system, Operator presentation, Successive 

approximations, Fixed point method. 

1. INTRODUCTION 
A lot of papers have been devoted to the investigation of flotation processes. We mention just (Cipriano; 

Parashkevova, 2006; Prozuto, 1987; Speedy et al., 1970; Loveday et al., 1995; Cienski et al., 1981; Finch et al., 

1990; Azgomi et al., 2007; Sbárbaro et al., 2010; Rubinstein et al., 1980). Here we study a system describing 

camera flotation process considered in (Rubinstein et al., 1980). From mathematical point of view, it is a system 

of hyperbolic type just like lossless transmission lines investigated in (Angelov, 2014): 
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Here ),( txC
P

is the mineral concentration in the liquid, ),( txC
B

 is the mineral concentration on the bubbles, 

1k  and 
2k  are prescribed kinetic constants describing particle transitions from one phase to another, H >0 is the 

height of the camera and  0,0 T  is prescribed time interval; the constant 0
P

V  is a particle sedimentation rate, 

the constant 0
B

V  - the bubble lifting speed. It is known that 
PB

VV  (cf. Rubinstein et al., 1980). The 

process in the camera are such that 
P

V is directed from top to bottom, while 
B

V the speed of the bubbles is directed 

upwards. 

 

For system (1) one can formulate the following mixed (initial-boundary value) problem: to find the unknown 

concentration functions ),( txC
P

 and ),( txC
B

 in   satisfying initial conditions 
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where 0.0  constC
P

 is a prescribed initial concentration and boundary conditions 

 

],0[0.),0(,0),0( 00 TtconstCtCtC
PPB

 .     (3) 

 

In (Angelov, 2014) the mathematical methods for investigation of transmission lines and some applications (cf. 

also Angelov et al., 2017) are developed. The methods from (Angelov, 2014) in (Angelov, 2016; Angelov, 2016; 

Angelov, 2019; Angelov, 2015; Angelov, 2015; Angelov, 2019) is generalized to study various problems for 

transmission line systems without Heaviside condition. It turns out that this method to our flotation problem is 

applicable. We present the mixed problem for the above hyperbolic system in an operator form. Choosing a 

suitable function space, we prove existence theorems for (1) - (3) by fixed point method (cf. Angelov, 2009). 
Finally, we demonstrate a simple way to obtain successive approximations tending to the solution of our problem. 

Introduce denotations 
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Then (1) can be rewrite as 
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Here the matrix 
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0
 is in a diagonal form. Therefore the characteristic roots are

PB
VV  21 ,  . So we are able to formulate the main problem of the paper: 

To solve the hyperbolic system (4) satisfying initial conditions 
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0.)0,(,0)0,( 0  constCxCxC
PPB

 Hx ,0       (5) 

and boundary conditions 
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 , where   1],0[:)(sup 0  Ttt . 

 

2. AN OPERATOR FORMULATION OF THE MIXED PROBLEM 

The mixed problem is: to find a solution  ),(,),( txCtxC
BP

 of the following system.  

Following (Angelov, 2016; Angelov, 2016; Angelov, 2019; Angelov, 2015; Angelov, 2015; Angelov, 2019) we 

consider the Cauchy problem for the characteristics: 
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Functions 0),( 
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Vtx  and 0),( 
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Vtx  are continuous ones and imply a uniqueness to the left 

from t  of the solution ),;( txt
B

   of ,/
B

Vdtd   xt )(  and respectively ),;( txt
P

   of

,/
P

Vdtd   xt )( . 

 

Denote by ),( tx
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BBB

  ),;(  of (6) still 

belongs to   and by ),( tx
P

  − the respective value of   for the solution tVxVtx
PPP

  ),;(  of 

(7). 

If 0),( tx
B

  then 0),);,(( txtx
BB

  or Htxtx
BB

),);,((  and respectively if 0),( tx
P

  

then 0),);,(( txtx
PP

  or Htxtx
PP

),);,(( . In our case  

 












0for0

0for
),(

xtV

xtV
V

x
t

tx

B

B

BB
   















0for0

0for
),(

HxtV

HxtV
V

xH
t

tx

P

P

PP
 . 

 

Remark: We notice that ttxttx
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 ),(0,),(0  . 

It is easy to see that 
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Introduce the sets 
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Prior to present the mixed problem in operator form we introduce 
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So we assign to the above mixed problem the following system of operator equations 
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Introduce the function sets: 

 

 ,],0[,ˆ),(:],0[],0([ 0 HxeCtxCTHCCM
t

BBBB
 

 

 

 ],0[,ˆ),(:],0[],0([ 0 HxeCtxCTHCCM
t

PPPP
 

, 

 

where 
PB

CC ˆ,ˆ  and   are positive constants. 
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It is easy to verify that the set 
PB

MM   turns out into a complete metric space with respect to the metric: 
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3. EXISTENCE THEOREM 

We call a generalized solution ),(
PB

CC  of (4), (5) if ),(
PB

CC  is a solution of integral equations (8).  The main 

purpose of the section is to prove an existence of solution of (8). 
 

Theorem 1. Let the following conditions be fulfilled for sufficiently large 0 : 
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Then there exists a unique generalized solution of (8) on the set ],0[],0[ 0TH   ,where H 0 . 

 

Proof:  We show that the operator  
PBPBPB

MMMMTTT  :,  above introduced maps the set 
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for sufficiently large 0 . 

The operator T is contractive one. Indeed, 
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For the second component we have 
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and in this way we have shown that T is a contractive operator. The fixed point of T is a solution of the mixed 

problem above formulated. 

The main Theorem is thus proved. 
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4. CONCLUSION REMARKS 
Here we show the process of obtaining of successive approximations. We begin with the first step choosing
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